

Daffodil International University

Faculty of Science & Information Technology

Department of Computer Science & Engineering

Final Examination, Fall 2024

Course Code: CSE315, Course Title: Introduction to Data Science

Level:3 Term:2 Batch: 63 & 62

Time: 02:00 Hrs

Marks: 40

Answer ALL Questions

[The figures in the right margin indicate the full marks and corresponding course outcomes. All portions of each question must be answered sequentially.]

1.	a) b)	A quality control officer at a factory tests 10 products randomly from a batch. Each product has a 20% chance of being defective. Find- (i) The probability that exactly 2 products in the sample are defective. (ii) The probability that at most 3 products are defective. Explain the key properties of a normal distribution. Provide examples of real- world that follow a normal distribution. The heights of adult men in a city are normally distributed with a mean of 170 cm and a standard deviation of 8 cm. What is the probability that a randomly selected man is taller than 180 cm? The table is given below for probability calculation.													ch. Each t exactly products of real- `170 cm selected	5	CO2
	c)		0.02	0.0	0.03		0.04		0.05				0.06		3		
		1.1	0.8686	0.8	707	10.23	0.8	728	The Ca	0.	8749		0	.8769)		
		1.2	0.8887	0.8	906		0.8	925	The s	0.	8943	1	0	.8961			
/		1.3	0.9065	0.9	082		0.9	098	1	0.9	9114		0	.9130)		
-2.	a)	A cor rando grama at a si the cr A fitm The v follov At a s reduc	npany cla om sample s with a po- gnificance itical valu- less traine weights o vs: 5% signif es weight	ims that e of 50 pa opulation e level of tes are: – r wants to f 8 parti Participa Veight bo Veight af ficance le . [Critica	the aver ackages standar f 0.05. [1 1.96 (lef o determ cipants nt efore fter vvel, tes al Value	rage is ti t d de For : it tai nine wer 1 75 73 t wh e: 1.	weig aken eviat: a two l), +1 if a r re re 2 82 79 nethe 895]	ght o , and ion o o-tail. 1.96 (new c cord 3 68 65 cr the	f a provide the f a providet he f a provide the f a providet he f a providet h	ackag samp gram st at a a tail) iise p efore 5 76 74 74 v exee	ged p ble m s. Te s sign rogra and <u>6</u> 85 82 rcise	roduce ean i st the ifican m le: afte 7 78 76 prog	ct is four s fou	500 g ind to pany vel of prog signi	rams. A b be 495 's claim f α =0.05, ght loss. gram as	5	CO2
3.	a	You are given a dataset of student scores in a class, and tasked with detecting and handling any outliers in the data. The dataset is as follows:													ting and	4	
		Stud	ent ID	1	2	3		4	15 4	5	6	5	7		8		
		Scor	e	85	90	10	00	20	0	88	9)5	45		92		
		Write Python code to detect outliers using the Interquartile Range (IQR) method. After detecting the outliers, explain and write code how you would handle them.											R) ild		CO3		

/								
J b)	Write down techniques of normalization in feature scaling.							
c)	 Feature extraction is a key step in many machine-learning workflows. In the context of supervised learning, explain the following: 1. Explain feature extraction, and why it is important in machine learning models. 2. Discuss at least two common techniques used for feature extraction, providing a brief description of each. 3. How does feature extraction improve the performance of a machine learning model? 	4						
4. a)	<pre>data = { 'Student': [1, 2, 3, 4, 5], 'Math': [85, 90, 78, 92, 75], 'Science': [78, 88, 74, 85, 80], 'English': [92, 76, 80, 89, 82], 'Total': [255, 254, 232, 266, 237], 'Average': [85.0, 84.67, 77.33, 88.67, 79.0] } i. Write Python code to transpose the dataset such that each row represents a subject (or calculated field, e.g., Total or Average), and each column represents the scores of the 5 students. ii. Drop the "Total" and "Average" rows from the transposed data. iii. Convert the transposed DataFrame into a new format where the column names are "Subject" and the scores of all 5 students are stored as a list." Display the final transformed DataFrame.</pre>	4						
b)	 A company is analyzing how the number of hours spent on training (X₁) and the number of years of experience (X₂) of employees affect their productivity score (Y). The following data is collected from three employees: Hours of Training (X1) 10 15 20 Year of Experiences (X2) 2 - 3 4 Productivity Score (Y) 50 60 70 i. Write the model equation in matrix form. ii. Use the normal equation (X^T X)⁻¹ X^T Y to calculate the values of the regression coefficients β₀, β₁, and β₂. iii. Interpret the meaning of β₁, and β₂ in the context of the data. What will be the Productivity Score if the employee has 6 years of experiences and done 12 hours of training? 	6	CO3					

1

١

9