

Daffodil International University

Faculty of Science & Information Technology Department of Computer Science & Engineering

Mid Semester Examination, Fall 2024

Course Code: CSE228, Course Title: Theory of Computation Level: L2 Term: T2 Batch: 64

Time: 01.5 Hrs

Marks:25

Answer ALL Questions [All portions of each question must be answered sequentially.]

Q	1	Summarize the difference between \emptyset and \in . Given the Alphabet $\Sigma = \{y, z, 0\}$,	[2]	
		so compute Σ^2	[0]	1
The second	1	Evaluate the string 00110 using extended transition function for the following transition table.	[2]	
1				CO
1	9	$\begin{array}{c cccc} & 0 & 1 \\ \hline & q0 & \{q0\} & \{q0,q1\} \\ & q1 & \{q2\} & \varnothing \\ & *q2 & \varnothing & \varnothing \end{array}$		CO
1		$*q2$ \emptyset \emptyset		
		Summarize the meaning of "a*b+b*a".	[1]	
			. ,	
Q	2 2	Apply the knowledge of NFA to Design NFA's accepting the following languages over the alphabet {a,b}	[3]	
		i) The set of all Strings containing aba anywhere in the string		
		ii) The set of all Strings ending with bba	1	
	4	iii) ending with bbb		
	b	Apply the knowledge of DFA to Design DFA's accepting the following languages over	[3]	CO
		the alphabet {0,1}		
		i) The set of strings containing 010 at the end in the string		
	1	Design DFA to accept the following language, L={W/W has odd number of 1's and even number of 0's}		
	(c)		[4]	
	1	If the mentioned Automata is NFA, then convert to DFA.		
Q3	(a)	Construct the Regular Expression for the language consisting of all the strings of 0' and	[3]	
		i) Containing 110 anywhere in the string ii) Containing 1 either two or three		
-		possible position from the beginning. iii) Containing 101 at the end of the string		
	b)	Convert the following Regular expression (RE) into NFA with € transition.	[3]	
		i) 1(1+0)*0 ii) (a b)*(abb a*b)		CO2
-	c)	Convert the following NFA into equivalent RE	[4]	
		(A) a,b		
		a,b (2) a,b (3)		
-				1