

Daffodil International University

Faculty of Science & Information Technology

Department of Computer Science & Engineering Final Semester Examination, Spring 2025

Course Code: PHY102, Course Title: Physics II

Level:1 Term:2 Batch:67

Time: 2:00 Hrs.

Marks: 40

Answer <u>ALL</u> the Questions

[The figures in the right margin indicate the full marks and corresponding course outcomes. All portions of each question must be answered sequentially.]

1.	<i>a</i>)	Which atomic model introduced quantized energy levels?	1	
	<i>b</i>)	Because of which force do neutrons and protons not separate?	1	CO1
	<i>c)</i>	List the types of particles emitted during alpha, beta, and gamma radioactive	2	
		decay.		
	<i>d</i>)	State the postulates of the special theory of relativity.	2	
	<i>e</i>)	Define isotope, isotone, and isobar with examples.	2	
	Ĵ)	Label the key components of the Compton Effect using a diagram.	2	
2.	<i>a</i>)	Interpret Einstein's photoelectric equation.	3	
	<i>b</i>)	Explain the key observations and limitations of Rutherford's atomic model.	4	CO2
	<i>c</i>)	How does Einstein's theory relate mass to energy?	4	
	<i>d</i>)	Show that the half-life of a radioactive element is inversely proportional to the	4	
		decay constant of that element. What will be the mean lifetime of a radioactive		
		substance if its half-life is 67 days?		
3.	<i>a</i>)	Find the frequency and wavelength of the photon emitted by the hydrogen	3	
	-	atom when it comes from -15 eV energy state to -34 eV state.		CO3
	<i>b</i>)	A man aged 40, left in a spacecraft moving with velocity 0.95c for a trip to	3	
	-	space, leaving behind his 15-year-old son on Earth. According to his own time,		
		he returned to Earth after spending 25 years in space. After returning, what are		
		the ages of both?		
	<i>c)</i>	Find the binding energy and binding energy per nucleon of the $^{238}_{92}U$ nucleus	3	
		in both MeV and joule units, given that the atomic mass of hydrogen is		
		1.007825 u, the mass of a neutron is 1.008665 u, and the atomic mass of $^{238}_{92}U$		
		is 238.05078 u.		
	<i>d</i>)	The decay constants of two radioactive elements A and B are 0.181 d ⁻¹ and	3	
		0.257 d^{-1} , respectively.		
		(a) Find the half-life of element B.		
		(b) Will the required time to decay 75% of both elements be the same?		
	<i>e</i>)	When an X-ray with a wavelength of 0.2400 nm is incident on an electron, it is	3	
		scattered at an angle of 60°. Find the wavelength of the scattered X-ray.		