

Daffodil International University

Department of Electrical and Electronic Engineering

Faculty of Engineering

Final Examination, Fall – 2024

Course Code: 0541-121

Section: A, B, C Full Marks: 40

Q2.

Course Title: Linear Algebra and Complex Variable

Level-Term: L1-T2 Date: December 21, 2024 Teacher's Initial: HRP

Time: 2 Hours

[Answer all the following questions]

Q1.	Illustrate the following with example		CO-1	[1*5]
	(a) Spectrum	(b) Singularity	(C2)	

- (c) Characteristic Polynomial
- (e) Analytic Function

CO-1 [10]

 $A = \begin{pmatrix} 0 & 4 & 2 \\ -3 & 8 & 3 \\ 4 & -8 & -2 \end{pmatrix}$ is a matrix (C2)

(d) Algebraic Multiplicity

Identify the spectrum of A

- **Identify** the eigenvalues of A^T, A³, A⁻¹, A⁻³. ii)
- Identify the eigenvectors of the matrix A. iii)

Examine whether the vector (16,1,-11.-23) is a linear combination of the CO-2 [6] Q3. vectors (2,0,-1,1), (-1,1,2,0), (1,1,0,-5) and (1,0,0,-1) in \mathbb{R}^4 . (C4)

b) Examine the linear dependency of S, where $S=\{(1,-2,1), (2,1,-1), (7,-4,1)\} \subset \mathbb{R}^3$ **CO-2** [4] (C4)

Examine whether the following mapping is linear or not and discover T^{-1} CO-2 [5] if it exists, where $T: \mathbb{R}^3 \to \mathbb{R}^3$ is given by T(x, y, z) = (2x + 8y, 5y, -2z)(C4)

List out all the possible roots of Q4. CO-3 [6]

> *i*) $z^5 = -32$ ii) $z^3 = 8i$

Using Cauchy's integral formula, analyze $\oint \frac{ze^z}{z - 2i} dz$ i) $|z| = \frac{1}{2}$ **CO-3** [4] (C4)

ii) |z| = 3Where the Circle is

(C4)