

Daffodil International University

Faculty of Science & Information Technology Department of Computer Science and Engineering Final Examination, Fall-2024

Course Code: MAT101, Course Title: Mathematics 1

Level: 1 Term: 1 Batch: 67

Time: 2 Hours

Marks: 40

Answer ALL Questions

[The figures in the right margin indicate the full marks and corresponding course outcomes. All portions of each question must be answered sequentially.]

1.	a) (b)	Construct the following rational fraction into the partial fraction $\frac{x^2 - 5x + 2}{x(x^2 + 9)(x - 3)^2}$ Construct the following rational fraction into the partial fraction $\frac{x^3 + 7}{x^2 - x - 20}$	[6] [4]	CO2
Z.		Analyze the maximum and the minimum value of the function. $f(x) = x^5 - 4x^4 + 6x^3 - 4x^2 + x$	[5]	CO3
Х.	JI)	Simplify the following integrals (i) $\int e^{-3x} \sin 7x \ dx$ (ii) $\int (\sin^2 x + \cos^3 x) dx$ (iii) $\int_0^{\frac{\pi}{2}} \frac{\sin^3 x}{\sin x + \cos x} \ dx$	[4]/ [4]/	7
	JS)	Consider the ellipse given by the equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the vertical line $x = c$, where $0 < c < a$. Examine the largest area of the region bounded by the ellipse and the line.	[6]	CO4
4.		Assume the vector $\vec{A} = (6xy + z^3)\hat{\imath} + (3x^2 - z)\hat{\jmath} + (3xz^2 - y)\hat{k}$, then examine that the vector is irrotational (i.e. Curl $\vec{A} = 0$). Also simplify the Divergence of \vec{A} .	[6]/	

" प्रवकात्मव (कार्य question