

Daffodil International University

Faculty of Science & Information Technology Department of Computer Science & Engineering Final Examination, Fall 2024

Course Code: CSE223, Course Title: Digital Logic Design

Level: 2 Term: 2 Batch: 64

Time: 02:00 Hrs

Marks: 40

Answer All Questions

[The figures in the right margin indicate the full marks and corresponding course outcomes. All portions of each question must be answered sequentially.]

1.	ni -	A smart home system is designed to automatically control the room light and	[10]	C. ROW
	9	fan. The system turns on the light and fan based on the conditions below.		CO3
	600	 At night, if any motion is detected, then the light will switch on. During the day, if any motion is detected and the sunlight is not 		
		sufficient, then the light will switch on.		
	1 18	If the temperature is high and motion is detected, then the fan will switch		
		on.		
	100	Construct the truth table, derive the Boolean expression, and draw the logic		
	B	circuit for the above scenario. Implement 1x16 De-multiplexer using 1x2 De-multiplexer.	[5]	
2	/	Explain the difference between synchronous and asynchronous counter circuits.	[5]	- 1
2.	a)	Provide one example of each.		
3.	ge)	Identify the output states Q and Q' for J-K flip flop, given the following pulse inputs.	[5]	CO4
-	7	CIKTITITI		
		J		
	1	к		
	4	A bakery uses a digital monitor to display the number of batches of bread baked	[10]	
		during a day. Since the oven can bake up to 10 batches in a shift, it resets after every 10 batches. Thus the monitor displays the batch number (from 0 to 9) for		
		each baking cycle.		
		Now design an appropriate ripple counter using JK flip-flops to display the batch number. Draw the circuit diagram, provide the truth table, and explain how the		1.4
		counter operates.		
	9)	A vending machine outputs a product when specific conditions are met:	[5]	
		• Condition 1: $F1(A,B,C) = \sum (1,3,5)$	1	
	-	• Condition 2: $F2(A,B,C) = \sum (2,6,7)$		
-	and all of	Construct the PLA implementation for F1 and F2. Create the truth table, show	1934	
		the required connections, and explain how the PLA realizes the logic.	a. C	