
 

1. A Smart Device System is being designed for an IoT (Internet of Things) ecosystem. The system includes 
various smart devices, such as SmartPhones and SmartWatches. All smart devices share some common 
attributes and behaviors but also have unique functionalities. 
 
• A Device has attributes: brand, model, and battery_Capacity. It also has a method turn-on(). 
• A SmartPhone has an extra attribute OS (operating system) and a method makeCall (). 
• A SmartWatch has an additional attribute stepCounter and a method trackSteps (). 
• A SmartPhone can be linked to multiple Wearable devices, while a SmartWatch can connect to at 

most one SmartPhone but multiple Wearables. Each Wearable must be linked to exactly one Device 
 

 
Task: 

 
a) Draw a UML Class Diagram representing these relationships with proper multiplicity notations and 

explain the associations between classes. 
b) Identify whether Device should be an abstract class or a superclass in an inheritance hierarchy. 
c) Analyze how Wearable connects with SmartWatch. Should it be inheritance or composition? 
d) Does SmartPhone inherit from Device, or is it an interface implementation? 

 

2. A Payment Processing System is being developed for an online marketplace. The system supports 
different types of payments, such as Credit Card Payments and Crypto Payments. 
• A Payment class has attributes: amount, currency, and a method processPayment(). 
• A CreditCardPayment class extends Payment and has attributes cardNumber, cardHolderName, and 

a method validateCard(). 
• A CryptoPayment class extends Payment and has an attribute walletAddress with a method 

verifyTransaction(). 
• There is also an interface called Refundable, which has a method issueRefund(). 

 
 

Task: 
 

a) Draw a UML Class Diagram for this system, including all relationships. 
b) Determine if Payment should be an abstract class or a concrete class. 
c) Analyze whether Refundable should be an interface or an abstract class. 
d) If both CreditCardPayment and CryptoPayment support refunds, how should they implement 

Refundable? 
 

 

 

 

 

 

 

For more questions: https://diuqbank.com | Uploader: SUPAN ROY



3. Create a BankAccount class with the following: 
• Private instance variables: accountNumber, balance 
• Public methods: deposit(double amount), withdraw(double amount), and getBalance() 
• Ensure that balance cannot be set directly and withdrawals cannot exceed the available balance. 

 
Task: 
Write a Java program that creates a BankAccount object, deposits 5000, withdraws 2000, and displays the 
remaining balance. 
 

4. Create a Product class that has: 
• Private variables: productName, price, stockQuantity 
• Constructor overloading: One constructor initializes all attributes, another initializes only 

productName and price. 
• A method purchase(int quantity) that reduces stock and prevents purchasing more than available 

stock. 
Task: 

• Create multiple Product objects and simulate buying products using method calls. 
 

 

 

 

 

 

 

 

 

 

For more questions: https://diuqbank.com | Uploader: SUPAN ROY


