Daffodil International University Faculty of Science & Information Technology Department of Software Engineering Midterm Examination, Spring 2025 Course Code: SE 532; Course Title: Introduction to Robotics Sections & Teachers: MTE(41-A,B,C,K,L), HI(41-D,E,F,M,N), MBM(41-G,H,I,J) Time: 1 Hour 30 Mins Marks: 25 ## Answer ALL Questions [The figures in the right margin indicate the full marks and corresponding course outcomes. All portions of each question must be answered sequentially.] | | patient. Meanwhile, the patient is unconscious and unable to consent, and delaying the treatment could be life-threatening. | | | | |-------|--|----------------|------------------|--| | a) | Give the definition of- Sensor, Repeatability, Offset Error, Resolution, Curie-Weiss Law. | [Marks-5] | CLO-1
Level-2 | | | b) | Based on Isaac Asimov's Three Laws of Robotics, discuss how the robot should respond to this situation. Discuss any ethical dilemmas that arise and how they might be addressed in real-world robotic systems. | [Marks-2] | | | | c) | What is the difference between proprioceptive and exteroceptive sensors in robotics? Review some proprioceptive and exteroceptive sensors that can be used to build the above mentioned robot. | [Marks-3] | | | | | robot must navigate the field, detect obstacles, adapt to weather conditions, and perform precise mechanical tasks. While moving through the field, the robot must detect nearby objects such as rocks or other equipment to avoid collisions. If the weather suddenly changes, the robot needs to determine whether it is raining and decide whether to continue working or return to a sheltered area. The robot moves across the field using wheels. A robotic arm is installed on the robot to perform precise farming tasks, such as adjusting irrigation nozzles and planting seeds. | | | | | | The robot moves across the field using wheels. A robotic arm is installed on the robot to perform precise farming tasks, s irrigation nozzles and planting seeds. | such as adjust | | | | a) | The robot moves across the field using wheels. A robotic arm is installed on the robot to perform precise farming tasks, s | such as adjust | ing
CLO-2 | | | a) b) | The robot moves across the field using wheels. A robotic arm is installed on the robot to perform precise farming tasks, s irrigation nozzles and planting seeds. With proper justification, determine the name of the required sensors and | | ing | |