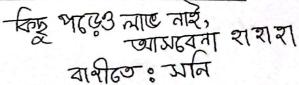


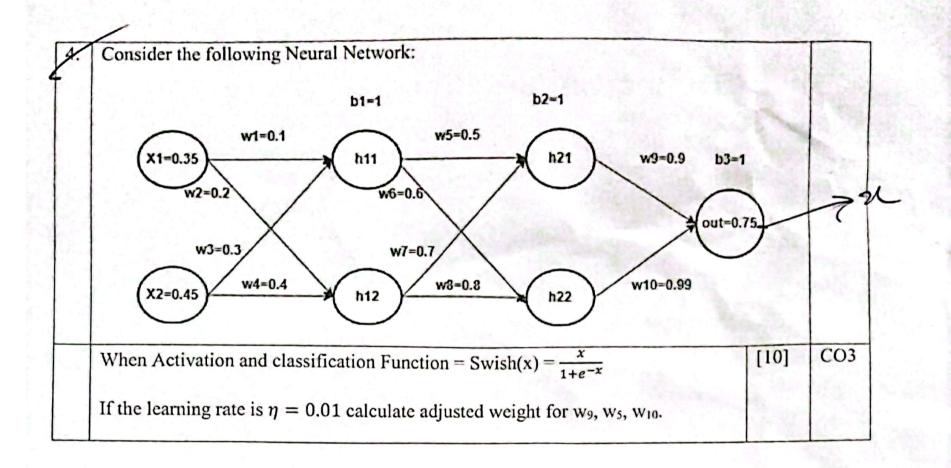
Daffodil International University

Faculty of Science & Information Technology
Department of Computer Science and Engineering
Final Examination, Fall-2024

Course Code: CSE445, Course Title: Natural Language Processing

Level: 4 Term: 1 Batch: 61


Time: 2 Hours Marks: 40


Answer ALL Questions

[The figures in the right margin indicate the full marks and corresponding course outcomes. All portions of each question must be answered sequentially.]

1.	a)	Describe topic modeling method v topic distribution are same, Justify	with an example? Is topics modeling are your answer?	nd [5]	CO
	b)		rent Neural Network (RNN) architect	ture [5]	
2.	a)	How does speech analysis prov	ride insights into human behavior affect its accuracy and effectiveness?	and [5]	. CO2
	b)	What tools are available for feature methods are used for noise reduction	e extraction from speech data, and whi	ch [5]	
3.	Consider the following dataset:				
	Text		Vector Representation	Label	
	"The movie was fantastic!"		[1, 0, 0, 1, 0, 1, 1, 0, 0, 1]	1	
	"I didn't enjoy the film."		[0, 1, 1, 0, 1, 0, 0, 1, 1, 0]	0	
	"An	mazing plot and acting!"	[1, 1, 0, 1, 0, 1, 0, 0, 0, 1]	1	
	"A"	terrible waste of time."	[0, 0, 1, 0, 1, 0, 1, 1, 1, 0]	0	
		t Layer → Hidden Layer Weights (WI	$\begin{bmatrix} 0.3 \\ 0.3 \end{bmatrix}$	0	
1	Input A scala	Layer \rightarrow Hidden Layer Weights (W) ar bias for the hidden layer neuron $b1$ n Layer \rightarrow Output Layer Weight (W2)	$V1 = \begin{bmatrix} 0.3 \\ -0.2 \\ 0.6 \\ 0.1 \\ -0.4 \\ 0.5 \\ 0.2 \\ -0.1 \\ 0.7 \\ -0.3 \end{bmatrix}$ $= 0.2$ $E():$ $W2 = [0.8]$		
	Input A scala	ar bias for the hidden layer Weights (WI ar bias for the hidden layer neuron b1 n Layer → Output Layer Weight (W2 ar bias for the output layer neuron b2	$V1 = \begin{bmatrix} 0.3 \\ -0.2 \\ 0.6 \\ 0.1 \\ -0.4 \\ 0.5 \\ 0.2 \\ -0.1 \\ 0.7 \\ -0.3 \end{bmatrix}$ $= 0.2$ $W2 = [0.8]$ $= -0.1$		
1	Input A scala lidder A scala	ar bias for the hidden layer weights (WI ar bias for the hidden layer neuron b1 n Layer → Output Layer Weight (W2 ar bias for the output layer neuron b2 Draw the neural network based on the	$V1 = \begin{bmatrix} 0.3 \\ -0.2 \\ 0.6 \\ 0.1 \\ -0.4 \\ 0.5 \\ 0.2 \\ -0.1 \\ 0.7 \\ -0.3 \end{bmatrix}$ $= 0.2$ $W2 = [0.8]$ $= -0.1$ The input vectors and weight matrices.	[2]	CO3
	A scala Hidder A scala	ar bias for the hidden layer neuron blan Layer → Output Layer Weight (W2) ar bias for the output layer neuron b2 Draw the neural network based on the Predict the class for the vector [0,1]	$V1 = \begin{bmatrix} 0.3 \\ -0.2 \\ 0.6 \\ 0.1 \\ -0.4 \\ 0.5 \\ 0.2 \\ -0.1 \\ 0.7 \\ -0.3 \end{bmatrix}$ $= 0.2$ $W2 = [0.8]$ $= -0.1$	[2] he [6]	CO3

Page 1 of 2

