

Daffodil International University

Faculty of Science & Information Technology Department of Software Engineering Midterm Examination, Summer 2025

Course Code: MAT101

Course Title: Mathematics I

Batch: 44; Section: A-L

Teachers Initial: MMH, DMMK, MIA, GRS

Time: 1 Hour 30 Minutes

Explain the following with a suitable example

Marks: 25

Answer ALL Questions

[The figures in the right margin indicate the full marks and corresponding course outcomes. All portions of each question must be answered sequentially]

	a. Relation b. Bijective Function c. Homogeneous Function	3×1=3	
2.	Compute the domain and range of the following function $f(x) = \frac{2x^2 + 3x + 17}{x^2 - x - 2}$ Express the following function graphically and write a comment on domain and range from the graph $f(x) = x - 2 - x + 3 + x $	its 4	CLO-1 L-2
3.	Calculate the non-zero value of k that makes the following funct continuous at $x = 0$, then also determine whether the function differentiable or not at the same point by using the non-zero value of $f(x) = \begin{cases} \frac{\tan kx}{x}, & x < 0\\ 3x + k^2, & x \ge 0 \end{cases}$	is	CLO-2 L-3
	b. If $u = \tan^{-1}\left(\frac{y+x}{\sqrt{y}+\sqrt{x}}\right)$ then show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \frac{1}{4}\sin 2u$	4	
	c. Compute the derivative of $x^{\sin(\ln(\tan^{-1}\sqrt{ax}))}$ with respect $a^{bx}\sin^m(rx) + a^m$	to 3	
	d. If $y = \ln(a^n x + b^n)$ then calculate the <i>n-th</i> derivative (y_n) of y	3	