

Daffodil International University

Faculty of Science & Information Technology
Department of Computer Science & Engineering
Mid Examination, Summer 2025
Course Code: CSE313, Course Title: Compiler Design

Level: 3 Term: 1 Batch: 64

Time: 01:30 Hrs

Marks: 25

Answer ALL Questions

[The figures in the right margin indicate the full marks and corresponding course outcomes. All portions of each question must be answered sequentially.]

1.	<i>a</i>)	$S \rightarrow P M Y$	[5]	CO1
		$P \rightarrow G T$ $G \rightarrow Gen \mid Millennial \mid Boomer$ $T \rightarrow z \mid x \mid alpha$ $M \rightarrow June \mid July \mid May \mid August$		
		$T \rightarrow z \mid x \mid alpha$		
		M → June July May August		
		$Y \to D D D D$ $D \to 0 1 2 3 4 5 6 7 8 9$		
		For the input string: "Gen z June 2025", determine whether the CFG is	4	
		ambiguous or not.		4000
2.	a)	Describe the phases of a compiler for the following expression. Exp = Sal - β 1 × X + β 2 × Y + β 3 × Z + ϵ * 0.3	[6]	CO1
	<i>b)</i>	Consider the following grammar. If there is Left Recursion then eliminate it.	[4]	
-		$A \rightarrow Cx \mid Ay$		
		$B \rightarrow m \mid An \mid Cp$		
		$C \rightarrow Ae \mid x$		
3.	a)	A simplified access control system is being modeled using a Finite State Machine	[6]	CO1
		(FSM). In this system, a user must swipe their ID card (s), enter a correct PIN (p),		
		and then the system grants access (a). The system also allows users to re-enter		
		PIN if it was mistyped after swiping. Design a Finite Automaton (FA) that		
		accepts all such strings. Clearly label all states, transitions, and final state(s) and		
		explain the five components (5-tuples) of that Finite State Machine (FSM).		
	b)	If the 3(a) FSM is classified as a NFA (Non-deterministic Finite Automaton),	[4]	
		transform it into an equivalent DFA (Deterministic Finite Automaton). If it is		
		already a DFA, provide a justification for why it meets the criteria of		
		determinism.		