

Daffodil International University

Department of Computer Science and Engineering Faculty of Science & Information Technology Final Term Examination, Spring 2025 Course Code: CSE 225, Course Title: Data Communication Level:2 Term:2 Batch: 65

Time: 2 Hours

Marks: 40

Answer <u>ALL</u> Questions

[The figures in the right margin indicate the full marks and corresponding course outcomes. All portions of each question must be answered sequentially.]

1	a)	Which of the modulation techniques vary its phase to determine 0 and 1? Analyze the possible advantages, limitations and applications of such modulation?	3	CO3
	b)	Calculate the number of bits per baud for the following techniques?a. ASK with four different amplitudesb. FSK with eight different frequenciesc. PSK with four different phasesd. QAM with a constellation of 128 points	4	
	c)	Calculate the narrow bandwidth for the following situations if we need to modulate a 7-KHz voice. a. AM b. FM c. PM	3	
2.	a)	Why do we need data rate management to achieve multiplexing? What kind of changes should be imposed in input data rates to achieve multiplexing? Analyze your understanding with appropriate figure.	3	CO3
	b)	Figure shows a multiplexer in a synchronous TDM system. Each output slot is only 10 bits long (3 bits taken from each input plus 1 framing bit). Analyze and illustrate the output stream. The bits arrive at the multiplexer as shown by the arrows.	3	
	c)	We need to use synchronous TDM and combine 20 digital sources, each of 100 Kbps. Each output slot carries 1 bit from each digital source, but one extra bit is added to each frame for synchronization. Investigate the following questions:	4	

		a. What is the size of an output frame in bits?		
		b. What is the output frame rate?		
		c. What is the duration of an output frame?		
		d. What is the output data rate?		
3	a)	Suppose, the dividend = 101000111 and the divisor = 1101. Inspect the polynomial CRC. Also Inspect the CRC has no error.	4	CO4
	b)	Suppose you have the following bits to send (in decimal): 6, 12, 10, 7, and 2. Inspect the checksum.	4	
	c)	How the single-bit error differ from a burst error? Differentiate with appropriate figure.	2	
4	a)	Why slotted ALOHA is better than pure ALOHA? Identify your logic.	3	CO4
	b)	In the reservation method, "a station needs to make a reservation before sending data". Analyze the statement.	3	
	c)	Suppose you have 4 stations (A, B, C and D). B, C are sending 0, D and A is sending 1. Demonstrate your calculation and discover the CDMA multiplexing values using Walsh table.	4	

10000