

Daffodil International University

Faculty of Science & Information Technology
Department of Computer Science and Engineering

Final Examination, Fall-2024
Course Code: MAT 102, Course Title: Mathematics II

Level: 01 Term: 02

Batch: 66

Time: 2 Hours

Marks: 40

Answer All Questions

[The figures in the right margin indicate the full marks and corresponding course outcomes. All portions of each question must be answered sequentially.]

	_	50 0		
1.	a)	Given $A = \begin{bmatrix} 3 & -2 & 1 \\ 0 & 5 & -3 \\ 2 & -7 & 4 \end{bmatrix}$.	[5+3+1]	
		(i) Construct the inverse matrix A^{-1} .		
		(ii) Organize A^{-1} as a sum of a symmetric matrix and a skew-symmetric matrix.		
		(iii) Identify whether the matrix A is orthogonal or not.		CO2
	b)	Given the matrix $M = \begin{bmatrix} 3 & -2 & 4 & 7 \\ 2 & 1 & 0 & -3 \\ 2 & 8 & -8 & 2 \end{bmatrix}$, identify the Rank, construct the	[5]	
		Reduced Row Echelon Form (RREF) and the Normal Form (NF) of M .		
2.		The figure below shows the traffic flow (vehicles per hour) through a network of streets.	[2+3+1]	CO3
		$ \begin{array}{c c} A & 20 \\ \hline & x_2 \\ \hline & 10 \\ \hline & x_3 \\ \hline & x_4 \\ \hline & E \end{array} $		
		 (i) Analyze the traffic flow in the network and construct a system of linear equations that represents this network. (ii) Examine the relationships among the variables x₁, x₂, x₃, x₄ and x₅ by solving the system of equations. (iii) Discover the traffic flow when x₅ = 25. 	,	
3.		Given $M = \begin{bmatrix} -5 & 0 & 0 \\ 9 & 2 & 0 \\ -1 & 4 & -3 \end{bmatrix}$.	[4+4]	CO3
		(i) List out the eigenvalues of M^{-2} and $(MM^{-1})^4$.		
		(ii) Inspect the trace of M^5 and the spectrum of $(M^{-3})^T$.		
4.	a)	Assess the linear independence of the vectors $(1,0,2,3)$, $(0,1,4,5)$ and $(1,1,6,8)$. If they are dependent, find a linear dependence relation and verify it.	[3+2]	
	b)	$\frac{P(x,y,z,t)}{Q(x,y)} = (4x + y - 2z - 3t, 2x + y + z - 4t, 6x - 9z + 9t),$ $\frac{Q(x,y)}{Q(x,y)} = (2xy, 5y, x), \underbrace{R(x,y,z)}_{R(x,y,z)} = (2x - y + 3z, x + 4y - 2z, -x + 2y + z),$ $\underbrace{S(x,y,z)}_{R(x,y,z)} = (4x + y, x - z, z + y).$	[4+3]	CO4
		(i) Examine which are LT.		
L	_	(ii) Evaluate RoSoP and PoS.		