

Daffodil International University

Department of Software Engineering Faculty of Science & Information Technology Mid Term Examination, Fall 2023

Course Code: PHY 101; Course Title: Physics-I: General Mechanics, Waves and Oscillations, Optics and Atom and Modern Physics

Sections & Teachers: (A, B, C, D, E, F): (G, H, I, J); Shahina Haque (SHA): Md. Suzauddulah (SDH)

Time: 1:30 Hrs Marks: 25

Answer ALL Questions

[The figures in the right margin indicate the full marks and corresponding course outcomes. All portions of each question must be answered sequentially.]

 b. Analyze the graph that represents the relationship between force and friction. [3] Demonstrate that the total energy of a particle engaged in Simple Harmonic Motion (SHM) [4] remains constant at any given moment. 3. A particle moves in a circle of radius 10 m. Its linear speed is given by v = 3t. (i) Predict the centripetal and tangential acceleration at t = 2 s (ii) Calculate the angle between the resultant 	CLO- Level- 1
 b. Analyze the graph that represents the relationship between force and friction. [3] Demonstrate that the total energy of a particle engaged in Simple Harmonic Motion (SHM) [4] remains constant at any given moment. A particle moves in a circle of radius 10 m. Its linear speed is given by v = 3t. (i) Predict the centripetal and tangential acceleration at t = 2 s (ii) Calculate the angle between the resultant 	
centripetal and tangential acceleration at t = 2 s (ii) Calculate the angle between the resultant	CLO- Level- 2
A projectile is launched with an initial speed of 20 m/s at an angle of 30 degrees above the horizontal from a height of 40 meters. Measure: a) The time and range it takes for the projectile to hit the ground. b) velocity of the ball when it reaches the ground The position of a particle is y=20sin(wt+α). Time period is 30sec and displacement is 10cm at t=0 Measure (i) epoch (ii) phase at t=5sec iii) phase difference between two positions of the particle 15 sec apart. A plane surface is inclined at an angle of 60degree. A body of mass 10 kg is placed on it. If the value of coefficient of friction μ _k , between the body and the inclined surface is 0.2, Find	CLO- Level- 3

