

Daffodil International University

Department of Computer Science and Engineering Faculty of Science & Information Technology Midterm Examination, Summer-2025

Course Code: CSE121, Course Title: Electrical Circuits

Level: 1 Term: 3 Batch: 67

Time: 1 Hour and 30 Minutes

Marks: 25

Answer ALL Questions

[The figures in the right margin indicate the full marks and corresponding course outcomes. All portions of each question must be answered sequentially.]

1.	al	Define the terms 'KVL & KCL.	5×1=5	CO1
	<i>b</i>)	State the term 'Superposition Theorem.		
	9)	Illustrate the Norton equivalent circuit.		
	<i>d</i>)	What do you mean by Current Divider Rule (CDR)?		
	(e)	What are the factors on which the resistance of a material depends?		
	<i>b</i>)	Solve the following circuit using mesh analysis to obtain i in the circuit below. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2×5=10	CO2

Page 1 of 2

3.	af	Examine the following circuit to obtain the Thevenin equivalent	$2\times5=10$	CO3
		circuit at terminals a-b.		
		SO of 20		
		8Ω \sim \sim \sim \sim \sim		
		$\S_{4\Omega}$		
		$2 \text{ A} \bigcirc \bigcirc$ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc		
		$\begin{pmatrix} + \\ - \end{pmatrix}$ 12 V		
		□		
		8 Ω		
	15	You are designing a fast-charging phone adapter with a 5V (Vs)		
/	′	output and an internal resistance (Rs) of 0.2 Ω. To		1
		achieve maximum power transfer for the fastest charging Analize		
		the follwing:		
		1. What should be the load resistance (RL) of the		
		smartphone's charging circuit?	ī' l	
		2. Calculate the maximum power (Pmax) delivered to the		
		phone.		
		3. If the phone's actual resistance is 0.3Ω , is the charger operating at peak efficiency? If not, how can you adjust the		
		design to improve power transfer?		
		double to improve power addition.		