■ 1 of 6

Daffodil International University Department of Software Engineering

Faculty of Science & Information Technology

Midterm Examination, Spring 2024

Course Code: SE123; Course Title: Discrete Mathematica

Sections: A, B, C, D, E, F, G, H, I, J, K, L, M, N, O Teachers: NF, NAE, NJM, MAH, MI, RM, RHH, AD

Time: 1 Hour 30 Mins Marks: 30

Answer ALL Questions

[The figures in the right margin indicate the full marks and corresponding course outcomes. All portions of each question must be answered sequentially.]

1	Explain if the propositional statements are logically equivalent. You must justify your answer. (a) (i) (P \(\Lambda \)) \((-P \(\Lambda \) -Q \(\Lambda \) R)	Vinit ioj	(14)-1 Level-2
	(ii) $(P \lor \neg Q) \land (Q \lor \neg P \lor R)$ (b) (i) $(X \land (X \rightarrow Y)) \lor (X \land (Y \rightarrow X))$		
	(ii) (X V ¬Y) A (Y V ¬X) Kawsher HRidoy		
2	Translate the sentence into predicate logic.	[Marks-5]	CLG:
	"For every person, if they have a smartphone, then they can access the internet."		Level-3
3	Let's say you tossed a coin and a dice at the same time. Apply probabilistic theory to find out the probability of both getting a head (from coin) and a six (from dice).	Marke-5	C133-2 Level-3
4	Let set $A = \{m \in Z \mid m = 2x+1 \text{ for some } x \in Z\}$ and set $B = \{n \in Z \mid 0 \le n \le 10 \& n \text{ is an odd number}\}$	[Murke-5]	CLO-2 Level-3
	Prove that $B \subseteq A$.		

Daffodil International University Department of Software Engineering Faculty of Science & Information Technology Midterm Examination, Fall 2024

Course Code: SE123; Course Title: Discrete Mathematics

Sections: All Teachers: MAK, RM, MI2, MJ

Time: 1 Hour 30 Mins

Marks: 25

Answer <u>ALL</u> Questions
[The figures in the right margin indicate the full marks and corresponding course outcomes. All portions of each question must be answered sequentially.]

[Marks-10]	CLO-1 Level-2
[Marks-5]	CLO-2
	Level-2
[Marks-5]	CLO-2 Lovel-3
[Marks-5]	CLO-2 Level-3
	[Marks-5]

Page 1 of 2

B= $\{x \mid x \text{ is an integer and } 5 \le x \le 25\}$	
Calculate the following by applying Set theory Concept:	
 Set of all positive even numbers from A set. Set of prime Numbers less than 20 from B set. Are Set A & B an equal set or not show it with justification. 	

Daffodil International University Department of Software Engineering Faculty of Science & Information Technology Midterm Examination, Fall 2023

Course Code: SE123; Course Title: Discrete Mathematics

Sections: A, B,C,D,E,F,G,H,I,J; Teachers: NF, RM

Time: 1 Hour 30 Mins Marks: 25

Answer ALL Questions

[The figures in the right margin indicate the full marks and corresponding course outcomes. All portions of each question must be answered sequentially.]

1.	Interpret the following compound propositional statements and determine whether they are logically equivalent. You must justify your answer.	Marks-9	CLO-1 Level-2
	(a) $P \oplus Q \leftrightarrow (\sim (p \land q))$ (b) $(P \uparrow Q) \land (Q \rightarrow P)$ (c) $X \oplus Y \cong (X \land \sim Y) \lor (\sim X \land Y)$,
2.	 Apply the concept of propositional logic and prove the following laws: (a) DeMorgan's: ~(p ∧ q) ≡ ~p ∨ ~q & ~(p ∨ q) ≡ ~p ∧ ~q (b) Distributive: p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r) & p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) Kawsher HRidoy (c) Absorption: p ∨ (p ∧ q) ≡ p & p ∧(p ∨ q) ≡ p 	[Mark-11]	CLO-2 Level-3
3	 X is the set of prime numbers less than 15 Y is the set of odd numbers less than 15 Z is the set of even numbers less than 15 How many of the following statements are true? Analyze it & provide answers. X ⊂ Y	[Mark-5]	CLO-3 . Level-4
	$Y \subset X$ $X \subset Z$		
	$\mathbf{Z} \subset \mathbf{X}$,	
	$Y \subset Z$ $Z \subset X$	KRW	