

Daffodil International University

Faculty of Science & Information Technology Department of Computer Science & Engineering

Final Examination, Fall 2024

Course Code: CSE228, Course Title: Theory of Computation

Level: L2 Term: T2 Batch: 64

Time: 02:00 Hrs

Marks:40

Answer ALL Questions

[The figures in the right margin indicate the full marks and corresponding course outcomes.

All portions of each question must be answered sequentially.]

OV	2)	Consider the following CFG:	[3]	
	1	Consider the following Cr G.	ری	
30		$P \rightarrow ABCD$		
. 1		$A \rightarrow aA \mid cC \mid oD \mid iC$		
30		$B \rightarrow ov \mid ovC$		
	2.1	$C \rightarrow id \mid id-D \mid \varepsilon$		
		$D \to 0 1 2 3 4 5 6 7 8 9$		CO2
		Experiment the above CFG to find out if the above mentioned CFG is ambiguous or not for the string covid-19.		
	R	Apply the concept of Push Down Automata (PDA) to accepts the language over alphabet $\{0,1,c\}$: $L = \{wcw^R, where w^R \text{ is the reverse of } w \text{ and } w \in \{0+1\}^*\}$. After designing the PDA, Experiment the validity of the string 10011c11001	[7]	
Q2	<i>p</i>)	Consider the following CFG:	[5]	
		$S \rightarrow OSS A, O \rightarrow + * /, A \rightarrow a b c$		
		Analyze this CFG for the string +a * b /ca to Perform the Left most derivation,	1	
		Right most derivation, also Generate Parse Tree		CO3
	K)	Drive the following regular expression into CFG: 0*10(0+1)*	[5]	
	,	Using the generated CFG:		
		Discover whether the strings 101001, and 011010, are accepted or not accepted.		
Q3/		Consider the following grammar:	[10]	
		$S \rightarrow ASB$		
		$A \rightarrow aASAB \mid a \mid \epsilon$		
		$B \rightarrow SbS \mid A \mid bb$		
		Perform the following steps:		CO3
		Eliminate useless symbols from the grammar.		
		(i) Remove unit productions from the grammar.	1	
		ii) Eliminate epsilon (e)-productions from the grammar.	1	
		(CNF).		
Q4	37)	Propose the Pumping Lemma for the language $A = \{a^ib^ja^{ij} \mid i, j \ge 0\}$ is not regular.	[5]	
	l l	2		CO4
	b	Determine a Turing Machine which recognizes the languages $L = \{ a^n b^{2n} n \ge 1 \}$	[5]	CO4