

Daffodil International University

Faculty of Science & Information Technology
Department of Computer Science and Engineering
Midterm Examination, Summer-2025

Course Code: MAT 102, Course Title: Mathematics II

Level: 01 Term: 02

Batch: 68

Time: 1.5 Hours

Marks: 25

Answer All Questions

[The figures in the right margin indicate the full marks and corresponding course outcomes. All portions of each question must be answered sequentially.]

1.	a)	Demonstrate the value of $\int_0^\infty 25 e^{-18x^2} x^{6-1} dx$.	[3]	
	b)	Illustrate β - Γ function to find the value of $\int_0^1 \frac{x^{\frac{2}{3}}}{\left(\sqrt{1-x^{\frac{1}{3}}}\right)^{-7}} dx$.	[3]	CO1
	c).	Extend the matrix A as the sum of a symmetric and a skew symmetric matrix. Where, $A = \begin{pmatrix} 2 & 4 & -6 \\ 1 & 7 & 0 \\ 5 & -2 & 8 \end{pmatrix}$.	[3]	-C01
2.	a)	Identify the value of M_{xy} and M_z . Where, $Q^{\gamma\gamma}(\gamma_{\gamma\gamma}) Q^{\gamma\gamma} = 0$	[2]	
		$M(x,y,z) = e^{xy}(\cos z) - \ln(xz). \qquad -e^{2\alpha - 1} \sin z - \frac{1}{z}$		
	b)	Apply Euler's theorem for the function $u = \cot^{-1}\left(\frac{\sqrt{x} - \sqrt{y} + \sqrt{z}}{\sqrt[5]{x^2} - \sqrt[5]{y^2} + \sqrt[5]{z^2}}\right)$ to show	[4]	CO2
		that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = -\frac{1}{20} \sin 2u$.		
3.		Construct the Matrix form of, $Z = 10Z_1 + (Z_2)^6 - 9Z_3$.	[5]	
		where, $Z_1 = e^{4.5i}$, $Z_2 = (-4 + 7i)$ and $Z_3 = (3.6, 250^\circ)$.		CO2
4.		Evaluate the total mass of a gas contained within a cuboidal chamber V, which	[5]	[5]
		is bounded by $(2 \le x \le e^2)$, $(-1 \le y \le 3)$, and $(1 \le z \le x^2)$. The density of		
		the gas varies throughout the chamber and is described by the function,		CO4
		$V = \iiint (\frac{y^2 z}{x}) dy dz dx.$		
		Where, (x, y, z) are the spatial coordinates inside the chamber.		

~ 3453