

Daffodil International University

Faculty of Science & Information Technology

Department of Computer Science and Engineering

Mid Semester Examination, Spring-2024

Course Code: CSE321 Course Title: Data Mining and Machine Learning

Term: 2

Level: 3 Exam Duration: 1.5 Hours

Marks: 25

Answer ALL Questions

[The figures in the right margin indicate the full marks and corresponding course outcomes. All portions of each question must be answered sequentially.]

ι.	a)	Discuss any two c		s usually perform	ned in Data Mining	g and	[3]	
		Machine Learning					and the second	CO
	b)	Explain the impac		nensionality" in	Data Mining and		[2]	
		Machine Learning						
2.		Consider the follo	wing data set of s	students and the	ir scores in three			
		subjects:				_		CO
		Name	Math	Physics	Chemistry			
		Rahim	85*	90	95			
		Karim	75	80	85			1.1
		Julekha	65 .	70	75			
		Sokhina	55 .	60	65			
		Sakib	63	55	70		7	$\gamma \in C_{1,1}$
		Mysba	70-	78	83	#		
		Zorina	90 •	87	82			
		and a second	63 •	58	52			
	a)	predicts the Physi and the final equa	ar regression to cs score based or tion.	find the equation the Math score	on of the best-fit lin e. Show your calcu	lations	[3]	_
	a) b)	Apply simple line predicts the Physi and the final equat Use the equation of score of a student	ar regression to cs score based or tion. of the best-fit line	find the equation the Math score calculated in 24	on of the best-fit lin	lations /sics	[3]	
3.		Apply simple line predicts the Physi and the final equat Use the equation of score of a student final answer.	ar regression to cs score based or ion. of the best-fit line who scored 70 in wing classificatio	find the equation the Math score calculated in 2a Math. Show yo	on of the best-fit lin e. Show your calcu a. to predict the Phy	lations /sics the		CO
3.		Apply simple line predicts the Physi and the final equat Use the equation of score of a student final answer. Consider the follo	ar regression to cs score based or ion. of the best-fit line who scored 70 in wing classificatio	find the equation the Math score calculated in 2a Math. Show yo on task of wheth	on of the best-fit line. Show your calcu a. to predict the Phy our calculation and	lations /sics the	[2]	CO
3.		Apply simple line predicts the Physi and the final equat Use the equation of score of a student final answer. Consider the follo based on their age	ar regression to cs score based or ion. of the best-fit line who scored 70 in wing classificatio and weight.	find the equation the Math score calculated in 2a Math. Show yo on task of wheth	on of the best-fit line. Show your calcu a. to predict the Phy our calculation and er a person is fit or	lations /sics the	[2]	CO
3.		Apply simple line predicts the Physi and the final equar Use the equation of score of a student final answer. Consider the follo based on their age Age	ar regression to cs score based or ion. of the best-fit line who scored 70 in wing classificatio and weight. Weigh	find the equation the Math score calculated in 2a Math. Show yo on task of wheth	on of the best-fit line. Show your calcu a. to predict the Phy our calculation and er a person is fit or Class	lations /sics the	[2]	CO
3.		Apply simple line predicts the Physi and the final equat Use the equation of score of a student final answer. Consider the follo based on their age Age 30	ar regression to cs score based or ion. of the best-fit line who scored 70 in wing classificatio and weight. Weigh 80	find the equation the Math score calculated in 2a Math. Show yo on task of wheth t 0 1	on of the best-fit line. Show your calcu a. to predict the Phypur calculation and er a person is fit or Class	lations /sics the	[2]	co
3.		Apply simple line predicts the Physi and the final equar Use the equation of score of a student final answer. Consider the follo based on their age 30 40	ar regression to cs score based or tion. of the best-fit line who scored 70 in wing classificatio and weight. Weigh 80 90	find the equation the Math score calculated in 2a Math. Show yo on task of wheth t (1 1	on of the best-fit lin e. Show your calcu a. to predict the Phy our calculation and er a person is fit or Class Fit Not fit	lations /sics the	[2]	co
3.		Apply simple line predicts the Physi and the final equat Use the equation of score of a student final answer. Consider the follo based on their age Age 30 40 35	ar regression to cs score based or ion. of the best-fit line who scored 70 in wing classification and weight. Weigh 80 90 60	find the equation the Math score calculated in 2a Math. Show yo on task of wheth t 0 1 1	on of the best-fit lin e. Show your calcu a. to predict the Phy our calculation and er a person is fit or Class Fit Not fit	lations /sics the	[2]	CO
		Apply simple line predicts the Physi and the final equat Use the equation of score of a student final answer. Consider the follo based on their age Age 30 40 35 45	ar regression to cs score based or tion. of the best-fit line who scored 70 in wing classificatio and weight. Weigh 80 90 60 70	find the equation the Math score calculated in 2a Math. Show yo on task of wheth t (1 1 1 1	on of the best-fit lin e. Show your calcu a. to predict the Phy our calculation and er a person is fit or Class Fit Not fit Fit Not fit	lations /sics the	[2]	co
3.		Apply simple line predicts the Physi and the final equat Use the equation of score of a student final answer. Consider the follo based on their age Age 30 40 35 45 38	ar regression to cs score based or ion. of the best-fit line who scored 70 in wing classification and weight. Weigh 80 90 60 70 73	find the equation the Math score calculated in 2a Math. Show yo on task of wheth t 1 1 1 1 1 1 1	on of the best-fit lin e. Show your calcu a. to predict the Phy our calculation and er a person is fit or Class Fit Not fit Fit Not fit Fit	lations /sics the	[2]	CO

	Male · Male Female · Male · Male Female	Cheap Cheap Cheap Cheap Cheap Standard	Low Medium' Medium Low. Medium	Bus Bus Train Bus Bus	
	Female Female • Male • Male	Cheap Cheap Cheap	Medium Low Medium	Train Bus	
	Female • Male • Male	Cheap Cheap	Low. Medium	Bus	
	• Male • Male	Cheap	Medium		
	•Male			Bus	
		Standard		the same description of the same second s	
	Female		Medium	Train	
	i emaie	Standard	Medium	Train	
	Female	Expensive	High	Car .	
	·Male	Expensive	Medium	Car ·	
	Female	Expensive	High	Car	
1	Male	Standard	Medium	?	1300000
1	Female	Cheap	Medium	?	
a) Bu	uild a decisi	ion tree model fro	om the given datase ed data for building	et based on entropy. You g the tree.	[8]

1 total E = -

AtBtC