

Daffodil International University

Faculty of Science & Information Technology Department of Computer Science & Engineering Mid Examination, Spring 2025 Course Code: CSE213, Course Title: Algorithms Level: 2 Term: 1 Batch: 66

Time: 01:30 Hrs

Marks: 25

Answer ALL Questions

[The figures in the right margin indicate the full marks and corresponding course outcomes. All portions of each question must be answered sequentially.]

1.	Analyze the complexity of the following code:						
	a)	b)	2.5	C01			
	for(int $i = 1; i \le n; i ++)$ {	<pre>void exampleFunction(int n) {</pre>	+				
	for(int $j = 1; j \le n; j \le 2$) {	for (int $i = 0$; $i < n$; $i + +$) {	2.5				
	int $x = 5$;	for (int $j = 0; j < n; j + +$) {					
	printf("i = %d, j = %d/n", i, j);	<pre>printf("*");</pre>					
	}	}					
		}					
	for(int i = 1; i <= n; i++) {	}					
	printf("i = %d n", i);						
	[-]	1.4		(
1			0-	602			
2.	Consider a sorted dataset containing 1 millio	05	CO2				
	1,000,000.						
	a) If you perform a binary search to fi						
	many comparisons would it take in the						
	b) If you perform a linear search instead						
	take in the worst case?						
	 c) Given the time complexity of both alg 						
	differ if the dataset size doubled to 2						
	d) Suppose the dataset is unsorted.						
	preferable and why?						
	c) If the target number is found early in						
	be more efficient, and under what con						
3.	You are given an unsorted array of integers:	05	CO2				
	sort this array in descending order using a d						
	Additionally, you must ensure that the algorithm						
	(i.e., it sorts in place) and display the interm						
	the array is sorted to help demonstrate how th						
	-						
4.	Given the message: khokakhokikhokamani	05	CO3				
	Construct a Huffman tree, assign variable-len						
	Compute the total bits required.						

5.	Imagine you're packing for a	05	CO3		
	in your backpack. You have				
	(how much space it takes up i				
	it is for your trip). You want				
	your backpack has a weight l				
	You can either take an item w item more than once. Find following list and mentioned				
	Product	Weight	Value		
1	Book	2	3		
	Camera	3	4		
	Pair of shoes	4	5		
	Jacket	5	6		
	Portable charger	6	7		
	Blanket	7	8		