Quiz-2

Course Title: Digital Logic Design

Course Code: CSE223

Section: 64_K

Date: 23 Sept 2024

Time: 25 minutes

Marks: 15

	What are	the differe	ences betwee	n Canonical	Form and Standard I	Form?	[2]	CO2
2	Write down the Canonical and the standard SOP and POS form of F(A,B,C)					of F(A,B,C)	[5]	CO2
		A:	В	C	X = F(A,B,C)		101	COZ
		0	0	0	0			
		.0	0	1	1			
		0	1	0	0			
		0		1	1			
	-	1	0	0	1			
		1	0	1	1			
		1	1	0	0			
		1	1	I	1			
	F(A,B,C,D) =	Σ(0,1,2,5,7	7,8,10,15) + Z	d(3, 4, 11,13)	842	1		
	1, 1	Simplify th	e Boolean ext	pression using	the K-map method. of Products (SOP) for			
4. (a)	i, :	Simplify the sine following naxterms:	e Boolean exp simplified exp ng Boolean e	pression using ression in Sun	the K-map method.	m,	[4]	CO3

- 1. Apply the simplification of the following Boolean function using K-map with sum of minterm: $F(A,B,C,D) = \Sigma(0,1,2,7,8,12,15) + \Sigma d(3,4,11,14)$
- 3. Develop a standard form the Boolean function $F(A,B,C,D) = \overline{B}D + \overline{A}D + BD$ as a sum of minterms and as a product of maxterms.
- 4. Construct the expression of Boolean function (F) and logic circuit from following truth table:

	В	C	F
A 10	03	00	
1	00	10	1
) 17	1	0	0
	1	1	0
	0 70	07	1
A	0 13	10	1
A	0 B	0	0
	1	-	0

Digital Logic Design (CSE-223)

Quiz-01

Section: 64_C

Date: 17-09-2024

You have countless options in life, but taday you've got just three. Thank you for waking up and showing up for the quiz. Good marning, and happy quizzing!

- 1. Three friends, Ali, Sara, and Rafiq, decided to buy new gadgets from an electronics store. Each of them chose a different gadget, and coincidentally, the prices of their gadgets were given in different number systems: The prices given are as follows: Ali's gadget price (101111101)₂, Sara's gadget price (750)₈ and Rafiq's gadget price (1E3)₁₀. Now verify that who spend most.
- Design a logic circuit for the Boolean expression (A + B) C + DE using basic logic gates (AND, OR, NOT). Then,
 re-implement the same circuit using only NAND gates. Show all steps and conversions for both
 implementations.
- Design two logic circuits: one using the X-OR gate and the other using the X-NOR gate. Write the Boolean
 expressions for each gate and construct their truth tables, showing all possible input combinations and
 corresponding outputs.

-	Why numb	er system c	onversion is a	needed? Conv	ert (A79E)16 to	binary.	[2.5]	CO2
	What is log	ic gate and	what are the	applications of	of X-OR gate		[2.5]	CO2
				ng Boolean al			[2]	CO2
(a)	implement th	e basic logic		OR, NOT) using	ersal gates. Dem only NOR gates.	Provide the	[3]	СОЗ
	Correspondin	B tratti tabic						
b)	Given the tru	ath table be	low, derive to gates (AND		pression and in	nplement the	[5]	
b)	Given the tru	ath table be using basic	low, derive to gates (AND	he Boolean ex. OR, NOT):		nplement the	[5]	
b)	Given the tru	ath table be using basic	low, derive to gates (AND B	he Boolean ex		nplement the	[5]	
b)	Given the tru	ath table be using basic	low, derive to gates (AND	he Boolean ex OR, NOT):		nplement the	[5]	
b)	Given the tru	ath table be using basic	low, derive to gates (AND B	he Boolean ex. OR, NOT):		nplement the	[5]	
b)	Given the tru	ath table be using basic	low, derive the gates (AND) B 0 0 1	he Boolean ex OR, NOT):		nplement the	[5]	
b)	Given the tru	ath table be using basic	low, derive to gates (AND B	he Boolean ex OR, NOT):		inplement the	[5]	
b)	Given the tru	ath table be using basic	low, derive the gates (AND) B 0 0 1	he Boolean ex OR, NOT):		inplement the	[5]	
b)	Given the tru	ath table be using basic	low, derive the gates (AND) B 0 0 1	he Boolean ex OR, NOT):	X 0 1 1 0	nplement the	[5]	