For more questions: https://diuqbank.com | Uploader: MD. AMIRUL ABEDIN TUSER

Daffodil International University

B. Sc. in Civil Engineering Final Examination, Spring - 2025

Course Code: CSE 202 Course Title: Computer Programming Lab

Section: BN21 Level-Term: 2-1 Teacher's Initial: SNA

Full Marks: 40 Date: May 28, 2025 Time: 2.0 Hours

Right margin indicates full marks. Answer all the questions in google colab notebook.

1. a). Assign the following data in a DataFrame using a dictionary [CO1, C2]

Names: Alice, Bob, Charlie, David

Marks: 85, 90, 95, 88

b). Add a new column called "Grade" based on the following: [CO1, C2] [05]

If Marks $\geq 90 \rightarrow 'A'$

 $80 \le Marks < 90 \rightarrow 'B'$

Else \rightarrow 'C'

c). Display only the students who got an A. [CO1, C2]

[03]

[02]

2. A fixed beam of length L= 6 + 0.5*sin(last_two_digit_of_student_id) m is subjected to a uniformly distributed load w =10 kN/m along its entire length. The beam has a constant flexural rigidity EI = 2 x 10⁷ kN/m²

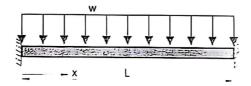


Figure 1

The deflection curve of the beam under this loading can be given by the formula:

$$y(x) = -\frac{w}{24EI}(x^4 - 2Lx^3 + L^2x^2)$$

where:

- y(x) is the vertical deflection at distance xxx from the left support (in meters),
- EI is the flexural rigidity (in kN·m²),
- w is the uniformly distributed load (in kN/m),
- L is the span length (in meters).

Demonstrate a plot in python that shows deflection of the beam. [CO3, C2]

[10]

3. The following data defines the sea-level concentration of dissolved oxygen for fresh water as a function of temperature:

T (°C)	0	8	16	24	32	40
DO (mg/L)	14.621	11.843	9.870	8.418	7.305	6.413

- a). Demonstrate a linear regression model to predict DO level based on temperature. [05] [CO3, C2]
- b). Show the model in a plot along with the given data points in scatter plot. [CO3, C2] [05]
- c). Determine dissolved oxygen for fresh water for 18 degree Celsius temperature. [CO3, [03] C2]
- 4. Apply a for loop to calculate the sum of given series. [CO2, C3] $S = 1*2*3*4 + 5*6*7*8 + \dots + 21*22*23*24$ [07]

